High molybdenum abundance in the ~2 Ga Zaonega Formation: Implications for seawater following the Lomagundi Excursion

Kearel Mänd1, Marie Thoby2, Stefan V. Lalonde3, Kärt Paiste4, Leslie J. Robbins5, Aivo Lepland3,4,5, Kalle Kirsimäe5, Kurt O. Konhauser1

1Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G 2E3, Canada 2European Institute for Marine Studies, CNRS UMR 6522 Laboratoire Océanologique, Université de Bretagne Occidentale, 29280 Paimpol, France 3CAGE—Centre for Arctic Gas Hydrates, Environment and Climate, Department of Geosciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway 4Geological Survey of Norway (NGU), Trondheim, Norway 5University of Tartu, Department of Geology, 50411 Tartu, Estonia

Background & objective

The enrichment and isotopic composition of redox-sensitive elements (RSE) in black shales are frequently used tools for estimating local and global marine redox conditions. For instance, Mo and U enrichments in the sedimentary record have been shown to increase after the Great Oxidation Event (GOE) and the Lomagundi Excursion (2.45-2.0 Ga). A decline in O₂ levels after 2.0 Ga is inferred to have caused a drop in marine RSE abundance [1]. However, it remains unclear how such trends are affected by basinial, rather than global conditions.

We have analysed RSE concentrations and Mo isotopes in a new 100-m section of the ~2 Ga Zaonega Formation (ZF), NW-Russia, in order to assess the importance of basinial versus global signals on RSE enrichment and to re-evaluate redox development in the critical ~2 Ga time interval which links the high-O₂ post-GOE and the low-O₂ Mesoproterozoic worlds.

Take-home points

- Some of the highest Mo concentrations in the Precambrian (up to 1000 μg/l) suggest a robust marine Mo pool at ~2 Ga. This argues against a previously inferred collapse of the sulfate pool at ~2 Ga [2].
- Mo behaviour in the ZF mostly reflects open basin conditions, thus RSE cycling in the ZF likely records global marine trends.
- Lack of basinial watermass restriction w.r.t. Mo cycling, however, points to 1.11 ± 0.07% being an underestimate of marine δ²⁹⁸⁰⁸⁰⁸Mo.
- Retention of Mo in high-TOC pyritobitumen veins suggests that the majority of Mo in the ZF is bound to organic phases.

Results

Study area

- Figure 1: δ¹³Corg, total organic carbon (TOC), P, U and Mo concentrations, δ²⁹⁸⁰⁸⁰⁸Mo and XRD-based Fe distribution in the studied section. A lithology-based correlation is used to combine chromatostratigraphic data from the two cores into a continuous section.
- Figure 2: Secular trends in Mo concentrations in black shales. The ZF contains some of the highest Mo enrichments known in the Precambrian, suggesting a robust Mo pool, Modified from [1].
- Figure 3: Secular trends in Mo/TOC ratios in black shales. These ratios likewise support a robust or even increased Mo pool at 2 Ga, Modified from [4].
- Figure 4: Crossplot of Mo and U enrichment factors (EF). The majority of the data follows a trend suggestive of increasing water-column hypoxia and sulfidity under non-restricted conditions [5]. Some scattered data possibly relate to Mo depletion in episodes of basinial restriction. Lack of restriction indicates that δ²⁹⁰⁸⁰⁸Mo is likely fractionated from seawater.
- Figure 5: Crossplot of Mo concentrations versus TOC content. The strong correlation even at high TOC levels suggests the association of Mo with organic phases.

References

Acknowledgements

Puntzevski, E. PES, Bremen, Brest, FR
De Puech, A. PES, Bremen, Brest, FR
Rouget, M., PES, IU, Brest, FR
Paiste, R, UT, Tartu, EST

Contact

kea|r|ma|nd|a|t|u|al|ber|ta.ca
+1-587-986-4466
1-25 Earth Sciences Building, University of Alberta
Edmonton, Alberta, Canada T6G 2E3