THE ORIGINS OF
BIODIVERSITY

Did changing oxygen levels in the Proterozoic induce
the rise of complex life?

Kaarel Mand
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COMPLEX LIFE LOVES OXYGEN

Large bodies and complex behaviours need energy.
Oxygen metabolism is among the most energetic.

High oxygen levels allow high nutrient fluxes into the
oceans.
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Was the rise of complex life controlled by oxygen
availability?

0.0



EUKARYOTE EVOLUTION
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PRESYMBIOSIS/SYMBIOGENESIS (“syntrophic”) Speijer, 2020, Bioessays
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EUKARYOTES LOVE OXYGEN

Ancestrally, the mitochondria was an oxygen-
breathing organelle.

Huge eukaryotic genomes and major genetic
innovation require a lot of energy.
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EUKARYOTES TOLERATE OXYGEN

The mitochondria and nucleus were a way to reduce
oxygen stress?

Sexual reproduction was a way to repair genome
damage from reactive oxygen?
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oxygen-rich environments.



EUKARYOTES... HATE OXYGEN?

It's very difficult to synthesize cellular components in
oxygen-rich environments.

The last common eukaryotic ancestor had the full
apparatus for anaerobic life.



FIRST SIGNS OF EUKARYOTES

Bangimorpha pubescens, ~1.1 b.y.a.




FIRST SIGNS OF EUKARYOTES

Valeria and Tappania, ~1.6 b.y.a.




FIRST SIGNS OF EUKARYOTES

Grypania, ~1.8 b.y.a., and Franceville biota, ~2.1 b.y.a.




Fossils

Molecular clocks

FIRST SIGNS OF EUKARYOTES

Evidence for

eukaryotes converges at ~1.6 b.y.a.
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FIRST REDOX REVOLUTION

2.4 b.y.a.: the first rise of O, in Earth's atmosphere.
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FIRST REDOX REVOLUTION

2.4 b.y.a.: the first rise of O, in Earth's atmosphere.
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0, OVERSHOOT

2.3-2.1 b.y.a.: even higher O, levels.
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0, CRASH

O, levels drop and stay low between ~2.0-0.8 b.y.a.
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REASONS FOR O, SHIFTS

Change in volcanic gases or niches for cyanobacteria
affected oxygen accumulation.
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REASONS FOR O, SHIFTS

Nutrient-rich minerals reacted with O,, leading to
higher bioproduction.
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REASONS FOR O, SHIFTS

Nutrient-rich minerals reacted with O,, leading to
higher bioproduction.
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O, RECORD AT LAKE ONEGA

NW-Russia hosts extensive ~2.0 b.y. old sedimentary
rocks.




O, RECORD AT LAKE ONEGA

Surprisingy high O, levels have been inferred from
geochemical proxies in these rocks.

ARTICLES nature _
https://doi.org /10.1038/541561-020-0558-5 geOSC1ence

'.] Check for updates

Palaeoproterozoic oxygenated oceans following
the Lomagundi-Jatuli Event
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CHROMIUM IN ONEGA ROCKS

Stable, high atmospheric O, throughout 100 m. years.

Cr isotope anomaly (®3Cr/>%Cr %o)
0 1

Depth in drill core (m)




EUKARYOTE-O, CONNECTION

Major shift in Cr cycling across the 1.9 b.y. boundary—
high, stable O, replaced by low, unstable O,.
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Cr isotope
anomaly

EUKARYOTE-O, CONNECTION

High O, levels did not bring about the first eukaryotes.
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WHAT TIMED THE EMERGENCE
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WHAT TIMED THE EMERGENCE
OF EUKARYOTES?

Environments with unstable O, levels? Endosymbioses
are common chemically unstable environments.

Timing not related to environmental backdrop.
Evolution takes its own sweet time.



ANIMAL EMERGENCE

The next major leap in biological compexity.




FIRST ANIMALS
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FIRST ANIMALS

Kimberella,>555 m.y.a.




FIRST ANIMALS



Molecular clocks suggest ~800 m.y.a. divergence.
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U concentrations

NEOPROTEROZOIC
OXYGENATION EVENT

Another rise in oxygen 800-500 m.y.a.
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ANIMALS WERE O,-DEPENDENT



ANIMALS WERE O,-DEPENDENT

O, increase corresponds well with animal emergence.



ANIMALS WERE O,-DEPENDENT

O, increase corresponds well with animal emergence.

All animals need O, during their life cycle.
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ANIMALS DID FINE WITH LOW O,

Many animals can survive anoxic conditions.

Sponges are supercharged breathing machines.




MOTILITY AS A LOW-O,
ADAPTATION

Gingras et al., 2011, NatGeo
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WERE MIDDLE PROTEROZOIC O,

LEVELS EVEN THAT LOW?
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DID COMPLEX LIFE INDUCE THE
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Filter feeders scavenge suspended organic matter, and
lead to O,-rich waters.



DID COMPLEX LIFE INDUCE THE
FINAL O, RISE?

Filter feeders scavenge suspended organic matter, and
lead to O,-rich waters.

Fecal pellets lead to more efficient carbon burial and
decreased O, consumption.



DID COMPLEX LIFE INDUCE THE
FINAL O, RISE?

Phanerozoic oceans

Well-mixed, clear-water system
dominated by eukaryotic algae
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Proterozoic oceans

Stratified, turbid, anoxic water
column dominated by cyanobacteria

Butterfield, 2011  TRENDS in Ecology & Evolution



DID COMPLEX LIFE INDUCE THE
FINAL O, RISE?

Trees >8m
Cryptospores Vascular plants
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CONCLUSIONS

Oxygen and nutrient rich environments favour more
complex ecosystems.

Eukaryotes did not emerge in oxgyen-replete
conditions.

Animal emergence and oxygen rise are closely spaced.

The role of oxygen in initiating biological complexity
remains largely unclear.



